Market Trends

Loading...

“We don’t know what we don’t know.” It’s a truth that seems to be on the minds of just about every financial institution these days. The market, not-to-mention the customer base, seems to be evolving more quickly now than ever before. Mergers, acquisitions and partnerships, along with new competitors entering the space, are a daily headline. Customers expect the same seamless user experience and instant gratification they’ve come to expect from companies like Amazon in just about every interaction they have, including with their financial institutions. Broadly, financial institutions have been slow to respond both in the products they offer their customers and prospects, and in how they present those products. Not surprisingly, only 26% of customers feel like their financial institutions understand and appreciate their needs. So, it’s not hard to see why there might be uncertainty as to how a financial institution should respond or what they should do next. But what if you could know what you don’t know about your customer and industry data? Sound too good to be true? It’s not—it’s exactly what Experian’s Ascend Analytical Sandbox was built to do. “At OneMain we’ve used Sandbox for a lot of exploratory analysis and feature development,” said Ryland Ely, a modeler at Experian partner client, OneMain Financial and a Sandbox user. For example, “we’ve used a loan amount model built on Sandbox data to try and flag applications where we might be comfortable with the assigned risk grade but we’re concerned we might be extending too much or too little credit,” he said. The first product built on Experian’s big data platform, Ascend, the Analytical Sandbox is an analytics environment that can have enterprise-wide impact. It provides users instant access to near real-time customer data, actionable analytics and intelligence tools, along with a network of industry and support experts to drive the most value out of their data and analytics. Developed with scalability, flexibility, efficiency and security at top-of-mind, the Sandbox is a hybrid-cloud system that leverages the high availability and security of Amazon Web Services. This eliminates the need, time and infrastructure costs associated with creating an internally hosted environment. Additionally, our web-based interface speeds access to data and tools in your dedicated Sandbox all behind the protection of Experian’s firewall. In addition to being supported by a revolutionized tech stack backed by an $825 million annual investment, Sandbox enables use of industry-leading business intelligence tools like SAS, RStudio, H2O, Python, Hue and Tableau. Where the Ascend Sandbox really shines is in the amount and quality of the data that’s put into it. As the largest, global information services provider, the Sandbox brings the full power of Experian’s 17+ years of full-file historical tradeline data, boasting a data accuracy rate of 99.9%. The Sandbox also allows users the option to incorporate additional data sets including commercial small business data and soon real estate data, among others. Alternative data assets add to the 50 million consumers who use some sort of financial service, in addition to rental and utility payments. In addition to including Experian’s data on the 220+ million credit-active consumers, small business and other data sets, the Sandbox also allows companies to integrate their own customer data into the system. All data is depersonalized and pinned to allow companies to fully leverage the value of Experian’s patented attributes and scores and models. Ascend Sandbox allows companies to mine the data for business intelligence to define strategy and translate those findings into data visualizations to communicate and win buy-in throughout their organization. But here is where customers are really identifying the value in this big data solution, taking those business intelligence insights and being able to take the resulting models and strategies from the Sandbox directly into a production environment. After all, amassing data is worthless unless you’re able to use it. That’s why 15 of the top financial institutions globally are using the Experian Ascend Sandbox for more than just benchmarking and data visualization but also risk modeling, score migration, share of wallet, market entry, cross-sell and much more. Moreover, clients are seeing time-savings, deeper insights and reduced compliance concerns as a result of consolidating their production data and development platform inside Sandbox. “Sandbox is often presented as a tool for visualization or reporting, sort of creating summary statistics of what’s going on in the market. But as a modeler, my perspective is that it has application beyond just those things,” said Ely. To learn more about the Experian Ascend Analytical Sandbox and hear more about how OneMain Financial is getting value out of the Sandbox, watch this on-demand webinar.

Published: December 11, 2018 by Jesse Hoggard

It’s the holiday season — time for jingle bells, lighting candles, shopping sprees and credit card fraud. But we’re prepared. Our risk analyst team constantly monitors our FraudNet solution performance to identify anomalies our clients experience as millions of transactions occur this month. At its core, FraudNet analyzes incoming events to determine the risk level and to allow legitimate events to process without causing frustrating friction for legitimate customers. That ensures our clients can recognize good customers across digital devices and channels while reducing fraud attacks and the need for internal manual reviews. But what happens when things don’t go as planned? Here’s a recent example. One of our banking clients noticed an abnormally high investigation queue after a routine risk engine tuning. Our risk analyst team looked further into the attacks to determine the cause and assess whether it was a tuning issue or a true fraud attack. After an initial analysis, the team learned that the events shared many of the same characteristics: Came from the same geo location that has been seen in previous attacks on clients Showed suspicious device and browser characteristics that were recognized by Experian’s device identification technology Identified suspicious patterns that have been observed in other recent attacks on banks The conclusion was that it wasn’t a mistake. FraudNet had correctly identified these transactions as suspicious. Experian® then worked with our client and recommended a strategy to ensure this attack was appropriately managed. This example highlights the power of device identification technology as a mechanism to detect emerging fraud threats, as well as link analysis tools and the expertise of a highly trained fraud analyst to uncover suspicious events that might otherwise go unnoticed. In addition to proprietary device intelligence capabilities, our clients take advantage of a suite of capabilities that can further enhance a seamless authentication experience for legitimate customers while increasing fraud detection for bad actors. Using advanced analytics, we can detect patterns and anomalies that may indicate a fraudulent identity is being used. Additionally, through our CrossCore® platform businesses can leverage advanced innovation, such as physical and behavioral biometrics (facial recognition, how a person holds a phone, mouse movements, data entry style), email verification (email tenure, reported fraud on email identities), document verification (autofill, liveliness detection) and digital behavior risk indicators (transaction behavior, transaction velocity), to further advance their existing risk mitigation strategies and efficacy.   With expanding partnerships and capabilities offered via Experian’s CrossCore platform, in conjunction with consultative industry expertise, businesses can be more confident during the authentication process to ensure a superb, frictionless customer experience without compromising security.

Published: December 4, 2018 by Guest Contributor

The winter holiday festivities are underway, and when it comes to the local malls, the holiday spending spirit seems to have already been in place for weeks. The season for swiping (credit cards) has begun. Before many of them set out with holiday gift lists in tow, they may be setting their sights on new lines of credit – by adding to their artillery of plastic. With 477.6 million existing credit card accounts, what do these consumers look like? While we can all agree that the meaning behind winter holiday celebrations is not the act of spending and giving material gifts, the two have come to be synonymous. This year is anticipated to be no different. When asked to describe their anticipated spending for the holidays this year, a recent Mintel survey said 56% of respondents planned to spend the same amount as they did last year. Nearly a quarter of respondents (23%) said they planned to spend more than they did last year. The uptick in spending as the year rounds out is no news flash. It is engrained within the fiscal landscape of each year, arguably its own tradition. According to a recent Experian consumer survey, Americans plan to spend an average of almost $850 on holiday gifts this year. Given what we know of consumers – and ourselves – as increased spending is upon us, credit card openings and usage are also on the rise. In order to capitalize on fulfilling your consumers needs during this bustling time filled with shopping bags and loaded online carts, it’s important to know what consumers look for in a credit card. Want to attract those holiday shoppers? The key to getting your plastic in their wallet is rewards, rewards, rewards. 58% of consumers will select a credit card for its rewards – including cash back, gas rewards, and retail gift cards – according to recent Experian consumer survey research. Is your credit card program stacked with rewards-ready options? Now what? Go where your consumers are – and for many of them that means online. While traditional retailers are still preferred destinations for holiday shopping, online is increasingly becoming a preferred way of shopping. 90% of consumers plan to do holiday shopping online, according to a Mintel study. Online shopping trends and online credit card applications trends seem to go hand in hand, according to Mintel and Experian data. Whether your consumers are looking for deals, that adrenaline rush of waiting until the last minute, or a trip to just get away from it all, credit cards can help them get there. And while the hustle and bustle of the holidays are ramping up, following the holidays quickly comes the new year – another close to 12 months of consumer spending (not just the dollars spent during this festive season). Consumer behavior across the entire year can be the key to enhancing your marketing and account management strategies. By knowing how much your consumers spend on all the plastic in their wallets – think bank cards too – you can offer customized reward programs, create strategies to maximize wallet share and retain profitable customers. Learn more about the first commercially-available spend algorithm built from credit data and tap into your wallet share for each consumer. 1Mintel Comperemedia 2Experian consumer survey research

Published: November 27, 2018 by Stefani Wendel

Synthetic identities come from accounts held not by actual individuals, but by fabricated identities created to perpetrate fraud. It often starts with stealing a child’s Social Security number (SSN) and then blending fictitious and factual data, such as a name, a mailing address and a telephone number. What’s interesting is the increase in consumer awareness about synthetic identities. Previously, synthetic identity was a lender concern, often showing itself in delinquent accounts since the individual was fabricated. Consumers are becoming aware of synthetic ID fraud because of who the victims are — children. Based on findings from a recent Experian survey, the average age of child victims is only 12 years old. Children are attractive victims since fraud that uses their personal identifying information can go for years before being detected. I recently was interviewed by Forbes about the increase of synthetic identities being used to open auto loans and how your child’s SSN could be used to get a phony auto loan. The article provides a good overview of this growing concern for parents and lenders. A recent Javelin study found that more than 1 million children were victims of fraud. Most upsetting is that children are often betrayed by people close to them -- while only 7 percent of adults are victimized by someone they know, 60 percent of victims under 18 know the fraudster. Unfortunately, when families are in a tight spot financially they often resort to using their child’s SSN to create a clean credit record. Fraud is an issue we all must deal with — lenders, consumers and even minors — and the best course of action is to protect ourselves and our organizations.

Published: November 2, 2018 by Chris Ryan

There are four reasons why the auto industry should be enthusiastic about the electric vehicle segment’s future.

Published: November 2, 2018 by Brad Smith

Where are electric vehicles most popular? During the first half of the year, 3.6 percent of all new registrations in California were EVs.

Published: October 31, 2018 by Brad Smith

In 2011, data scientists and credit risk managers finally found an appropriate analogy to explain what we do for a living. “You know Moneyball? What Paul DePodesta and Billy Beane did for the Oakland A’s, I do for XYZ Bank.” You probably remember the story: Oakland had to squeeze the most value out of its limited budget for hiring free agents, so it used analytics — the new baseball “sabermetrics” created by Bill James — to make data-driven decisions that were counterintuitive to the experienced scouts. Michael Lewis told the story in a book that was an incredible bestseller and led to a hit movie. The year after the movie was made, Harvard Business Review declared that data science was “the sexiest job of the 21st century.” Coincidence?   The importance of data Moneyball emphasized the recognition, through sabermetrics, that certain players’ abilities had been undervalued. In Travis Sawchik’s bestseller Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak, he notes that the analysis would not have been possible without the data. Early visionaries, including John Dewan, began collecting baseball data at games all over the country in a volunteer program called Project Scoresheet. Eventually they were collecting a million data points per season. In a similar fashion, credit data pioneers, such as TRW’s Simon Ramo, began systematically compiling basic credit information into credit files in the 1960s. Recognizing that data quality is the key to insights and decision-making and responding to the demand for objective data, Dewan formed two companies — Sports Team Analysis and Tracking Systems (STATS) and Baseball Info Solutions (BIS). It seems quaint now, but those companies collected and cleaned data using a small army of video scouts with stopwatches. Now data is collected in real time using systems from Pitch F/X and the radar tracking system Statcast to provide insights that were never possible before. It’s hard to find a news article about Game 1 of this year’s World Series that doesn’t discuss the launch angle or exit velocity of Eduardo Núñez’s home run, but just a couple of years ago, neither statistic was even measured. Teams use proprietary biometric data to keep players healthy for games. Even neurological monitoring promises to provide new insights and may lead to changes in the game. Similarly, lenders are finding that so-called “nontraditional data” can open up credit to consumers who might have been unable to borrow money in the past. This includes nontraditional Fair Credit Reporting Act (FCRA)–compliant data on recurring payments such as rent and utilities, checking and savings transactions, and payments to alternative lenders like payday and short-term loans. Newer fintech lenders are innovating constantly — using permissioned, behavioral and social data to make it easier for their customers to open accounts and borrow money. Similarly, some modern banks use techniques that go far beyond passwords and even multifactor authentication to verify their customers’ identities online. For example, identifying consumers through their mobile device can improve the user experience greatly. Some lenders are even using behavioral biometrics to improve their online and mobile customer service practices.   Continuously improving analytics Bill James and his colleagues developed a statistic called wins above replacement (WAR) that summarized the value of a player as a single number. WAR was never intended to be a perfect summary of a player’s value, but it’s very convenient to have a single number to rank players. Using the same mindset, early credit risk managers developed credit scores that summarized applicants’ risk based on their credit history at a single point in time. Just as WAR is only one measure of a player’s abilities, good credit managers understand that a traditional credit score is an imperfect summary of a borrower’s credit history. Newer scores, such as VantageScore® credit scores, are based on a broader view of applicants’ credit history, such as credit attributes that reflect how their financial situation has changed over time. More sophisticated financial institutions, though, don’t rely on a single score. They use a variety of data attributes and scores in their lending strategies. Just a few years ago, simply using data to choose players was a novel idea. Now new measures such as defense-independent pitching statistics drive changes on the field. Sabermetrics, once defined as the application of statistical analysis to evaluate and compare the performance of individual players, has evolved to be much more comprehensive. It now encompasses the statistical study of nearly all in-game baseball activities.   A wide variety of data-driven decisions Sabermetrics began being used for recruiting players in the 1980’s. Today it’s used on the field as well as in the back office. Big Data Baseball gives the example of the “Ted Williams shift,” a defensive technique that was seldom used between 1950 and 2010. In the world after Moneyball, it has become ubiquitous. Likewise, pitchers alter their arm positions and velocity based on data — not only to throw more strikes, but also to prevent injuries. Similarly, when credit scores were first introduced, they were used only in originations. Lenders established a credit score cutoff that was appropriate for their risk appetite and used it for approving and declining applications. Now lenders are using Experian’s advanced analytics in a variety of ways that the credit scoring pioneers might never have imagined: Improving the account opening experience — for example, by reducing friction online Detecting identity theft and synthetic identities Anticipating bust-out activity and other first-party fraud Issuing the right offer to each prescreened customer Optimizing interest rates Reviewing and adjusting credit lines Optimizing collections   Analytics is no substitute for wisdom Data scientists like those at Experian remind me that in banking, as in baseball, predictive analytics is never perfect. What keeps finance so interesting is the inherent unpredictability of the economy and human behavior. Likewise, the play on the field determines who wins each ball game: anything can happen. Rob Neyer’s book Power Ball: Anatomy of a Modern Baseball Game quotes the Houston Astros director of decision sciences: “Sometimes it’s just about reminding yourself that you’re not so smart.”  

Published: October 26, 2018 by Jim Bander

While electric vehicles remain a relatively niche part of the market, with only 0.9 percent of the total vehicle registrations through June 2018, consumer demand has grown quite significantly over the past few years. As I mentioned in a previous blog post, electric vehicles held just 0.5 percent in 2016. Undoubtedly, manufacturers and retailers will look to capitalize on this growing segment of the population. But, it’s not enough to just dig into the sales number. If the automotive industry really wants to position itself for success, it’s important to understand the consumers most interested in electric vehicles. This level of data can help manufacturers and retailers make the right decisions and improve the bottom line. Based on our vehicle registration data, below is detailed look into the electric vehicle consumer. Home Value Somewhat unsurprisingly, the people most likely to purchase an electric vehicle tend to own more expensive homes. Consumers with homes valued between $450,000-$749,000 made up 25 percent of electric vehicle market share. And, as home values increase, these consumers still make up a significant portion of electric vehicle market. More than 15 percent of the electric vehicle market share was made up by those with homes valued between $750,000-$999,000, and 22.5 percent of the share was made up by those with home values of more than $1 million. In fact, consumers with home values of more than $1 million are 5.9 times more likely to purchase an electric vehicle than the general population.  Education Level Breaking down consumers by education level shows another distinct pattern. Individuals with a graduate degree are two times more likely to own an electric vehicle. Those with graduate degrees made up 28 percent of electric vehicle market share, compared to those with no college education, which made up just 11 percent. Consumer Lifestyle Segmentation Diving deeper into the lifestyles of individuals, we leveraged our Mosaic® USA consumer lifestyle segmentation system, which classifies every household and neighborhood in the U.S. into 71 unique types and 19 overachieving groups. Findings show American Royalty, who are described as wealthy, influential couples and families living in prestigious suburbs, led the way with a 17.8 percent share. Following them were Silver Sophisticates at 11.9 percent. Those in this category are described as mature couples and singles living an upscale lifestyle in suburban homes. Rounding out the top three were Cosmopolitan Achiever, described as affluent middle-aged and established couples and families who enjoy a dynamic lifestyle in metro areas. Their share was 10.1 percent. If manufacturers and retailers go beyond just the sales figures, a clearer picture of the electric vehicle market begins to form. They have an opportunity to understand that wealthier, more established individuals with higher levels of education and home values are much more likely to purchase electric vehicles. While these characteristics are consistent, the different segments represent a dynamic group of people who share similarities, but are still at different stages in life, leading different lifestyles and have different needs. As time wears on, the electric vehicle segment is poised for growth. If the industry wants to maximize its potential, they need to leverage data and insights to help make the right decisions and adapt to the evolving marketplace.

Published: October 26, 2018 by Brad Smith

This is an exciting time to work in big data analytics. Here at Experian, we have more than 2 petabytes of data in the United States alone. In the past few years, because of high data volume, more computing power and the availability of open-source code algorithms, my colleagues and I have watched excitedly as more and more companies are getting into machine learning. We’ve observed the growth of competition sites like Kaggle, open-source code sharing sites like GitHub and various machine learning (ML) data repositories. We’ve noticed that on Kaggle, two algorithms win over and over at supervised learning competitions: If the data is well-structured, teams that use Gradient Boosting Machines (GBM) seem to win. For unstructured data, teams that use neural networks win pretty often. Modeling is both an art and a science. Those winning teams tend to be good at what the machine learning people call feature generation and what we credit scoring people called attribute generation. We have nearly 1,000 expert data scientists in more than 12 countries, many of whom are experts in traditional consumer risk models — techniques such as linear regression, logistic regression, survival analysis, CART (classification and regression trees) and CHAID analysis. So naturally I’ve thought about how GBM could apply in our world. Credit scoring is not quite like a machine learning contest. We have to be sure our decisions are fair and explainable and that any scoring algorithm will generalize to new customer populations and stay stable over time. Increasingly, clients are sending us their data to see what we could do with newer machine learning techniques. We combine their data with our bureau data and even third-party data, we use our world-class attributes and develop custom attributes, and we see what comes out. It’s fun — like getting paid to enter a Kaggle competition! For one financial institution, GBM armed with our patented attributes found a nearly 5 percent lift in KS when compared with traditional statistics. At Experian, we use Extreme Gradient Boosting (XGBoost) implementation of GBM that, out of the box, has regularization features we use to prevent overfitting. But it’s missing some features that we and our clients count on in risk scoring. Our Experian DataLabs team worked with our Decision Analytics team to figure out how to make it work in the real world. We found answers for a couple of important issues: Monotonicity — Risk managers count on the ability to impose what we call monotonicity. In application scoring, applications with better attribute values should score as lower risk than applications with worse values. For example, if consumer Adrienne has fewer delinquent accounts on her credit report than consumer Bill, all other things being equal, Adrienne’s machine learning score should indicate lower risk than Bill’s score. Explainability — We were able to adapt a fairly standard “Adverse Action” methodology from logistic regression to work with GBM. There has been enough enthusiasm around our results that we’ve just turned it into a standard benchmarking service. We help clients appreciate the potential for these new machine learning algorithms by evaluating them on their own data. Over time, the acceptance and use of machine learning techniques will become commonplace among model developers as well as internal validation groups and regulators. Whether you’re a data scientist looking for a cool place to work or a risk manager who wants help evaluating the latest techniques, check out our weekly data science video chats and podcasts.

Published: October 24, 2018 by Guest Contributor

Electric vehicles are here to stay – and will likely gain market share as costs reduce, travel ranges increase and charging infrastructure grows.

Published: October 24, 2018 by Brad Smith

Vehicle prices are going up, yet consumers seem unfazed. Despite consumers taking out larger loan amounts, they continue to make their monthly payments on time. But, affordability remains a point of industry interest.  As vehicle prices hit record highs, how long will consumers have an appetite for them? According to Experian’s latest State of Automotive Finance Market report, delinquency rates continued a downward trend, as 30- and 60-day delinquencies were 2.11 and 0.64 percent, respectively, at the end of Q2. Those numbers demonstrate that car owners are making timely payments despite rising vehicle costs, which is an encouraging sign for the market. The average loan amount for a new vehicle is now $30,958, a $724 increase from last year. Additionally, consumers are now making monthly payments of about $525 on a new car loan, an all-time high that has seen a $20 year over year increase. The auto market shows little to no sign of declining costs, but vehicles aren’t the only cost to consider – interest rates have increased by 56 basis points since last year.  When combined with the rising manufacturer costs, long-term affordability is a continued concern within the industry. The data points to consumers offsetting the expense by taking out longer loan terms. In Q2, the most common loan length was 72 months—which equates to six years—for both new and used financing. While this lowers the monthly payment, it leaves them subject to paying higher interest over time, as well as the potential for individuals to be upside down on their loan for a longer period of time. The key takeaway from this data is that costs continue to rise, but consumers appear to be doing a better job of managing their finances. This insight can help OEMs, dealers, and lenders make strategic decisions with a better understanding of consumer borrowing and credit habits, and think about how to make car ownership more inviting, through incentive or loyalty programs. For consumers, continuing to take steps to actively improve your credit score is one of the key ways to ensure that you’re able to negotiate the right deal when it comes to financing. Ultimately, for everyone involved, it comes down to leveraging the power of data to make more informed decisions, which can help make vehicle ownership more accessible and affordable. To learn more about the State of the Automotive Finance Market report, or to watch the webinar, click here.

Published: October 22, 2018 by Melinda Zabritski

Big Data is no longer a new concept. Once thought to be an overhyped buzzword, it now underpins and drives billions in dollars of revenue across nearly every industry. But there are still companies who are not fully leveraging the value of their big data and that’s a big problem. In a recent study, Experian and Forrester surveyed nearly 600 business executives in charge of enterprise risk, analytics, customer data and fraud management. The results were surprising: while 78% of organizations said they have made recent investments in advanced analytics, like the proverbial strategic plan sitting in a binder on a shelf, only 29% felt they were successfully using these investments to combine data sources to gather more insights. Moreover, 40% of respondents said they still rely on instinct and subjectivity when making decisions. While gut feeling and industry experience should be a part of your decision-making process, without data and models to verify or challenge your assumptions, you’re taking a big risk with bigger operations budgets and revenue targets. Meanwhile, customer habits and demands are quickly evolving beyond a fundamental level. The proliferation of mobile and online environments are driving a paradigm shift to omnichannel banking in the financial sector and with it, an expectation for a customized but also digitized customer experience. Financial institutions have to be ready to respond to and anticipate these changes to not only gain new customers but also retain current customers. Moreover, you can bet that your competition is already thinking about how they can respond to this shift and better leverage their data and analytics for increased customer acquisition and engagement, share of wallet and overall reach. According to a recent Accenture study, 79% of enterprise executives agree that companies that fail to embrace big data will lose their competitive position and could face extinction. What are you doing to help solve the business problem around big data and stay competitive in your company?

Published: September 27, 2018 by Jesse Hoggard

Traditional credit data has long been the end-all-be-all ruling the financial services space. Like the staple black suit or that little black dress in your closet, it’s been the quintessential go-to for decades. Sure, the financial industry has some seasonality, but traditional credit data has reigned supreme as the reliable pillar. It’s dependable. And for a long time, it’s all there was to the equation. But as with finance, fashion and all things – evolution has occurred. Specifically, how consumers are managing their money has evolved, which calls for deeper insights that are still defensible and disputable. Alternative credit data is the new black. It's increasingly integrated in credit talks for lenders across the country. Much like that LBD, it's become a lending staple – that closet (or portfolio) must-have – to leverage for better decisioning when determining creditworthiness. What is alternative data? In our data-driven industry, “alternative” data as a whole may best be summed up as FCRA-compliant credit data that isn't typically included in traditional credit reports. For traditional data, think loan and inquiry data on bankcards, auto, mortgage and personal loans; typically trades with a term of 12 months or greater. Some examples of alternative credit data include alternative financial services data, rental data, full-file public records and account aggregation. These insights can ultimately improve credit access and decisioning for millions of consumers who may otherwise be overlooked. Alternative or not, every bit of information counts FCRA-compliant, user permissioned data allows lenders to easily verify assets and income electronically, thereby giving lenders more confidence in their decision and allowing consumers to gain access to lower-cost financing. From a risk management perspective, alternative credit data can also help identify riskier consumers by identifying information like the number of payday loans acquired within a year or number of first-payment defaults. Alternative credit data can give supplemental insight into a consumer’s stability, ability and willingness to repay that is not available on a traditional credit report that can help lenders avoid risk or price accordingly. From closet finds that refresh your look to that LBD, alternative credit data gives lenders more transparency into their consumers, and gives consumers seeking credit a greater foundation to help their case for creditworthiness. It really is this season’s – and every season’s – must-have. Learn more

Published: September 18, 2018 by Stefani Wendel

The August 2018 LinkedIn Workforce Report states some interesting facts about data science and the current workforce in the United States. Demand for data scientists is off the charts, but there is a data science skills shortage in almost every U.S. city — particularly in the New York, San Francisco and Los Angeles areas. Nationally, there is a shortage of more than 150,000 people with data science skills. One way companies in financial services and other industries have coped with the skills gap in analytics is by using outside vendors. A 2017 Dun & Bradstreet and Forbes survey reported that 27 percent of respondents cited a skills gap as a major obstacle to their data and analytics efforts. Outsourcing data science work makes it easier to scale up and scale down as needs arise. But surprisingly, more than half of respondents said the third-party work was superior to their in-house analytics. At Experian, we have participated in quite a few outsourced analytics projects. Here are a few of the lessons we’ve learned along the way: Manage expectations: Everyone has their own management style, but to be successful, you must be proactively involved in managing the partnership with your provider. Doing so will keep them aligned with your objectives and prevent quality degradation or cost increases as you become more tied to them. Communication: Creating open and honest communication between executive management and your resource partner is key. You need to be able to discuss what is working well and what isn’t. This will help to ensure your partner has a thorough understanding of your goals and objectives and will properly manage any bumps in the road. Help external resources feel like a part of the team: When you’re working with external resources, either offshore or onshore, they are typically in an alternate location. This can make them feel like they aren’t a part of the team and therefore not directly tied to the business goals of the project. To help bridge the gap, performing regular status meetings via video conference can help everyone feel like a part of the team. Within these meetings, providing information on the goals and objectives of the project is key. This way, they can hear the message directly from you, which will make them feel more involved and provide a clear understanding of what they need to do to be successful. Being able to put faces to names, as well as having direct communication with you, will help external employees feel included. Drive engagement through recognition programs: Research has shown that employees are more engaged in their work when they receive recognition for their efforts. While you may not be able to provide a monetary award, recognition is still a big driver for engagement. It can be as simple as recognizing a job well done during your video conference meetings, providing certificates of excellence or sending a simple thank-you card to those who are performing well. Either way, taking the extra time to make your external workforce feel appreciated will produce engaged resources that will help drive your business goals forward. Industry training: Your external resources may have the necessary skills needed to perform the job successfully, but they may not have specific industry knowledge geared towards your business. Work with your partner to determine where they have expertise and where you can work together to providing training. Ensure your external workforce will have a solid understanding of the business line they will be supporting. If you’ve decided to augment your staff for your next big project, Experian® can help. Our Analytics on DemandTM service provides senior-level analysts, either onshore or offshore, who can help with analytical data science and modeling work for your organization.

Published: September 5, 2018 by Guest Contributor

Subscribe to our blog

Enter your name and email for the latest updates.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Subscribe to our Experian Insights blog

Don't miss out on the latest industry trends and insights!
Subscribe