Tag: modeling

Loading...

Generative AI (GenAI) is transforming the financial services industry by boosting operational efficiency, cutting costs, and enhancing customer experience. Today, industry leaders are leveraging GenAI technology to accelerate the modeling lifecycle, streamline workflows, and ensure regulatory compliance. However, financial institutions face several headwinds in their efforts to achieve strong business results. What industry challenges do financial institutions face? To drive profitability while fueling growth, organizations need to reduce costs, manage risks, and identify new revenue streams while complying with regulatory requirements. Growing customer bases are also a top priority for banking leaders in 2025, requiring personalized services and improved customer experiences to attract and retain customers.1 Staying one step ahead of the competition is another hurdle that many organizations need to overcome. A recent study states that 23% of U.S. consumers surveyed have opened a new bank account, and 28% have considered switching to a new bank in the past six months.2 Traditional financial institutions must continuously innovate to stay on pace with smaller, more agile fintech companies. Adopting technologies like GenAI is an effective way to stay relevant and top-of-mind with consumers. Why use GenAI technology in financial services? Financial organizations that use GenAI are achieving success by: Increasing productivity and efficiency Minimizing costs Strengthening customer relationships GenAI has revolutionized productivity, customer service, risk management, and financial data analysis within the financial services industry. Of all the various measurements of AI use, improved productivity was reported to be the leading indicator of successful implementation.3 Online tools like virtual assistants and chatbots provide personalized experiences to consumers and resolve issues in real time, leading to enhanced customer satisfaction. This AI technology reduces the workload on human agents and enables organizations to deliver value more quickly and with less friction. GenAI adoption at Experian Experian® is a leader in GenAI solutions, using advanced technology to manage and improve data. We champion responsible AI use, ensuring proper consumer data privacy, compliance, fraud prevention, and greater financial access and inclusion. Experian Assistant is our latest innovation in GenAI helping financial institutions to accelerate the modeling lifecycle, which enhances efficiency, reduces expenses, and promotes customer growth. Experian Assistant allows businesses to build and deploy models, monitor performance, and go to market more quickly and with less friction, which can translate to more business success. The tool provides instant expert recommendations and insights with comprehensive support, enabling users to make smarter and faster data-driven decisions. This technology offers multiple functions that are crucial for optimizing business efficiency: Natural language interface Deep insights into underlining data tables and metrics Reduced operational and cloud expenses Decreased risk of penalties Read our latest white paper to discover more about how our latest GenAI innovation, Experian Assistant, is empowering organizations to drive business growth and profitability. Read the white paper 1  BAI, 2025. Acquiring new customers and growing quality deposits are the top business challenges in 2025. 2 MX, 2023. What Influences Where Consumers Choose to Bank. 3 Forrester, Q2 AI Pulse Survey, 2024.

Published: May 21, 2025 by Brian Funicelli

GenAI is pushing financial institutions to focus on improving efficiency, productivity, and time to value during the modeling lifecycle. Experian Assistant provides robust tools for data exploration, model building, deployment, and performance monitoring, allowing users to drive better decision-making.

Published: April 8, 2025 by Brian Funicelli

For businesses across all sectors solutions that improve productivity are more important than ever. As technology advances, organizations across industries are looking to capitalize by investing in artificial intelligence (AI) solutions. Studies have recently shown that productivity is a leading measure of how well these AI tools are performing. About 60% of organizations surveyed are using “improved productivity” as a metric to measure the success of implementing AI solutions.[1] Experian research shows it takes an average of 15 months to build a model and put it into production. This can hinder productivity and the ability to quickly go to market. Without a deep understanding of key data points, organizations may also have difficulty realizing time to value efficiently. To improve upon the modeling lifecycle, businesses must examine the challenges involved in the process. The challenges of model building One of the most significant challenges of the modeling lifecycle is speed. Slow modeling processes can cause delays and missed opportunities for businesses which they may have otherwise capitalized on. Another difficulty organizations face is having limited access to high-quality data to build more efficient models. Without the right data, businesses can miss out on actionable insights that could give them a competitive edge. In addition, when organizations have inefficient resources, expenses can skyrocket due to the need for experts to intervene and address ongoing issues. This can result in a steep learning curve as new tools and platforms are adopted, making it difficult for organizations to operate efficiently without outside help. Businesses can combat these challenges by implementing tools such as artificial intelligence (AI) to drive efficiency and productivity. The AI journey While generative AI and large language models are becoming more prevalent in everyday life, the path to incorporating a fully functional AI tool into an organization’s business operations involves multiple steps. Beginning with a proof of concept, many organizations start their AI journey with building ideas and use cases, experimentation, and identifying and mitigating potential pitfalls, such as inaccurate or irrelevant information. Once a proof of concept reaches an acceptable state of validity, organizations can move on to production and value at scale. During this phase, organizations will select specific use cases to move into production and measure their performance. Analyzing the results can help businesses glean valuable information about which techniques work most effectively, so they can apply those techniques to new use cases. Following successful iterations of an efficiently functioning AI, the organization can then implement that AI as a part of their business by working the technology into everyday operations. This can help organizations drive productivity at scale across various business processes. Experian’s AI journey has been ongoing, with years of expertise in implementing AI into various products and services. With a goal of providing greater insights to both businesses and consumers while adhering to proper consumer data privacy and compliance, Experian is committed to responsibly using AI to combat fraud and foster greater financial access and inclusion. Our most recent AI innovation, Experian Assistant, is redefining how financial organizations improve productivity with data-driven insights. Introducing Experian Assistant Experian Assistant, a new GenAI tool announced in October at Money20/20 in Las Vegas, is helping organizations take their productivity to the next level by drastically speeding up the modeling lifecycle. To drive automation and greater intelligence for Experian partners, Experian Assistant enables users to interact with a virtual assistant in real time and offers customized guidance and code generation for our suite of software solutions. Our experts – Senior Director of Product Management Ankit Sinha and Director of Analyst Relations Erin Haselkorn – recently revealed the details of how Experian Assistant can cut down model-development timelines from months to days, and in some cases even hours. The webinar, which took place on November 7th, covered a wide range of features and benefits of the new tool, including:  Spending less time writing code  Enhancing understanding of data and attributes Accelerating time to value Improving regulatory compliance A case study in building models faster Continental Finance Company, LLC’s Chief Data Scientist shared their experience using Experian Assistant and how it has improved their organization’s modeling capabilities: “With Experian Assistant, there is a lot of efficiency and improvement in productivity. We have reduced the time spent on data building by almost 75%, so we can build a model much quicker, and the code being generated by Experian Assistant is very high quality, enabling us to move forward much faster.” For businesses looking to accelerate their modeling lifecycle and move more quickly with less effort, Experian Assistant provides a unique opportunity to significantly improve productivity and efficiency. Experian Assistant tech showcase Did you miss the Experian Assistant Tech Showcase webinar? Watch it on demand here and visit our website to learn more. Visit our website [1] Forrester’s Q2 AI Pulse Survey, 2024

Published: November 12, 2024 by Brian Funicelli

Financial institutions have long been on the cutting edge of technology trends, and it continues to be true as we look at artificial intelligence and machine learning. Large analytics teams are using models to solve for lending decisions, account management, investments, and more. However, unlike other industries taking advantage of modeling, financial institutions have the added complexity of regulation and transparency requirements to ensure fairness and explainability. That means institutions need highly sophisticated model operations and a highly skilled workforce to ensure that decisions are accurate and accountability is maintained. According to new research from Experian, we see that while financial institutions plan to use or are using models for a wide range of use cases, there is a range of ModelOps maturity across the industry. Just under half of financial institutions are in the early stages of model building, where projects are more ad-hoc in nature and experimental. Only a quarter of institutions seem to be more mature, where processes are well defined and models can be developed in a reliable timeframe. With more than two-thirds of lenders saying that ModelOps will play a key role in shaping the industry over the next five years, the race to maturity is critical. One of the biggest challenges we see in the space is that it takes too long for models to make it into production. On average, financial institutions estimate that the end-to-end process for creating a new model for credit decisioning takes an average of 15 months. Organizations need to accelerate model velocity, meaning the time that it takes to get a model into production and generating value, to take advantage of this powerful technology. Having the right technology, the right talent, and the right data at the right time continue to drag down operational speed and tracking of models after they are in production. For more information on Experian’s recent study, download the new report ‘Accelerating Model Velocity in Financial Institutions’. We are also hosting an upcoming webinar with tips on how to tackle some of the biggest model development and deployment challenges. You can register for the webinar here.

Published: August 15, 2023 by Erin Haselkorn

The COVID-19 pandemic has created shifting economic conditions and rapidly evolving consumer preferences. Lenders must keep up by re-evaluating their strategies to accelerate growth and beat the competition. Here's how AI/ML can help your organization evolve post-COVID-19: With the democratization of AI/ML, lenders of all sizes can now use this technology to grow their lending and optimize for strategic growth. Register for our upcoming webinar to see how lenders like Elevate have incorporated this new technology into their business processes. Register now

Published: June 2, 2021 by Kelly Nguyen

AI, machine learning, and Big Data – these are no longer just buzzwords. The advanced analytics techniques and analytics-based tools that are available to financial institutions today are powerful but underutilized. And the 30% of banks, credit unions and fintechs successfully deploying them are driving better data-driven decisions, more positive customer experiences and stronger profitability. As the opportunities surrounding advanced analytics continue to grow, more lenders are eager to adopt these capabilities to make the most of their datasets. And it’s understandable that financial institution are excited at the possibilities and insights that advanced analytics can bring to their business. However, there are some key considerations to keep in mind as you begin this important digital transformation. Here are three things you should do as your financial institution begins its advanced analytics journey. Ensure consistent and clean data quality Companies have a plethora of data and information on their customers. The main hurdles that many organizations face is being able to turn this information into a clean and cohesive dataset and formulating an effective and long-term data management strategy. Trying to implement advanced analytic capabilities while lacking an effective data governance strategy is like building a house on a poor foundation – likely to fail. Data quality issues, such as inconsistent data, data gaps, and incomplete and duplicated data, also haunt many organizations, making it difficult to complete their analytics objectives. Ensuring that issues in data quality are managed is the key to gaining the correct insights for your business.   Establish and maintain a single view of customers The power of advanced analytics can only be as strong as the data provided. Unfortunately, many companies don’t realize that advanced analytics is much more powerful when companies are able to establish a single view of their customers. Companies need to establish and maintain a single view of customers in order to begin implementing advanced analytic capabilities. According to Experian research, a single customer view is a consistent, accurate and holistic view of your organization’s customers, prospects, and their data. Having full visibility and a 360 view into your customers paves the way for companies to make personalized, relevant, timely and precise decisions. But as many companies have begun to realize, getting this single view of customers is easier said than done. Organizations need to make sure that data should always be up-to-date, unique and available in order to begin a complete digital transformation.   Ensure the right resources and commitment for your advanced analytics initiative It’s important to have the top-down commitment within your organization for advanced analytics. From the C-suite down, everyone should be on the same page as to the value analytics will bring and the investment the project might require. Organizations that want to move forward with implementing advanced analytic capabilities need to make sure to set aside the right financial and human resources that will be needed for the journey. This may seem daunting, but it doesn’t have to be. A common myth is that the costs of new hardware, new hires and the costs required to maintain, configure, and set up new technology will make advanced analytics implementation far too expensive and difficult to maintain. However, many organizations don’t realize that it’s not necessary to allocate large capital expenses to implement advanced analytics. All it takes is finding the right-sized solution with configurations to fit the team size and skill level in your organization. Moreover, finding the right partner and team (whether internal or external) can be an efficient way to fill temporary skills gaps on your team. No digital transformation initiative is without its challenges. However, beginning your advanced analytics journey on the right footing can deliver unparalleled growth, profitability and opportunities. Still not sure where to begin? At Experian, we offer a wide range of solutions to help you harness the full power and potential of data and analytics. Our consultants and development teams have been a game-changer for financial institutions, helping them get more value, insight and profitability out of their data and modeling than ever before. Learn More

Published: November 12, 2019 by Kelly Nguyen

Subscribe to our blog

Enter your name and email for the latest updates.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Subscribe to our Experian Insights blog

Don't miss out on the latest industry trends and insights!
Subscribe