Loading...

In Lending as in Baseball, Moneyball Is No Longer Enough

Published: October 26, 2018 by Jim Bander

In 2011, data scientists and credit risk managers finally found an appropriate analogy to explain what we do for a living. “You know Moneyball? What Paul DePodesta and Billy Beane did for the Oakland A’s, I do for XYZ Bank.” You probably remember the story: Oakland had to squeeze the most value out of its limited budget for hiring free agents, so it used analytics — the new baseball “sabermetrics” created by Bill James — to make data-driven decisions that were counterintuitive to the experienced scouts. Michael Lewis told the story in a book that was an incredible bestseller and led to a hit movie. The year after the movie was made, Harvard Business Review declared that data science was “the sexiest job of the 21st century.”

Coincidence?

The importance of data

Moneyball emphasized the recognition, through sabermetrics, that certain players’ abilities had been undervalued. In Travis Sawchik’s bestseller Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak, he notes that the analysis would not have been possible without the data. Early visionaries, including John Dewan, began collecting baseball data at games all over the country in a volunteer program called Project Scoresheet. Eventually they were collecting a million data points per season. In a similar fashion, credit data pioneers, such as TRW’s Simon Ramo, began systematically compiling basic credit information into credit files in the 1960s.

Recognizing that data quality is the key to insights and decision-making and responding to the demand for objective data, Dewan formed two companies — Sports Team Analysis and Tracking Systems (STATS) and Baseball Info Solutions (BIS). It seems quaint now, but those companies collected and cleaned data using a small army of video scouts with stopwatches. Now data is collected in real time using systems from Pitch F/X and the radar tracking system Statcast to provide insights that were never possible before. It’s hard to find a news article about Game 1 of this year’s World Series that doesn’t discuss the launch angle or exit velocity of Eduardo Núñez’s home run, but just a couple of years ago, neither statistic was even measured. Teams use proprietary biometric data to keep players healthy for games. Even neurological monitoring promises to provide new insights and may lead to changes in the game.

Similarly, lenders are finding that so-called “nontraditional data” can open up credit to consumers who might have been unable to borrow money in the past. This includes nontraditional Fair Credit Reporting Act (FCRA)–compliant data on recurring payments such as rent and utilities, checking and savings transactions, and payments to alternative lenders like payday and short-term loans. Newer fintech lenders are innovating constantly — using permissioned, behavioral and social data to make it easier for their customers to open accounts and borrow money. Similarly, some modern banks use techniques that go far beyond passwords and even multifactor authentication to verify their customers’ identities online. For example, identifying consumers through their mobile device can improve the user experience greatly. Some lenders are even using behavioral biometrics to improve their online and mobile customer service practices.

 

Continuously improving analytics

Bill James and his colleagues developed a statistic called wins above replacement (WAR) that summarized the value of a player as a single number. WAR was never intended to be a perfect summary of a player’s value, but it’s very convenient to have a single number to rank players.

Using the same mindset, early credit risk managers developed credit scores that summarized applicants’ risk based on their credit history at a single point in time. Just as WAR is only one measure of a player’s abilities, good credit managers understand that a traditional credit score is an imperfect summary of a borrower’s credit history. Newer scores, such as VantageScore® credit scores, are based on a broader view of applicants’ credit history, such as credit attributes that reflect how their financial situation has changed over time. More sophisticated financial institutions, though, don’t rely on a single score. They use a variety of data attributes and scores in their lending strategies.

Just a few years ago, simply using data to choose players was a novel idea. Now new measures such as defense-independent pitching statistics drive changes on the field.

Sabermetrics, once defined as the application of statistical analysis to evaluate and compare the performance of individual players, has evolved to be much more comprehensive. It now encompasses the statistical study of nearly all in-game baseball activities.

 

A wide variety of data-driven decisions

Sabermetrics began being used for recruiting players in the 1980’s. Today it’s used on the field as well as in the back office. Big Data Baseball gives the example of the “Ted Williams shift,” a defensive technique that was seldom used between 1950 and 2010. In the world after Moneyball, it has become ubiquitous. Likewise, pitchers alter their arm positions and velocity based on data — not only to throw more strikes, but also to prevent injuries.

Similarly, when credit scores were first introduced, they were used only in originations. Lenders established a credit score cutoff that was appropriate for their risk appetite and used it for approving and declining applications. Now lenders are using Experian’s advanced analytics in a variety of ways that the credit scoring pioneers might never have imagined:

  • Improving the account opening experience — for example, by reducing friction online
  • Detecting identity theft and synthetic identities
  • Anticipating bust-out activity and other first-party fraud
  • Issuing the right offer to each prescreened customer
  • Optimizing interest rates
  • Reviewing and adjusting credit lines
  • Optimizing collections

Analytics is no substitute for wisdom

Data scientists like those at Experian remind me that in banking, as in baseball, predictive analytics is never perfect. What keeps finance so interesting is the inherent unpredictability of the economy and human behavior. Likewise, the play on the field determines who wins each ball game: anything can happen. Rob Neyer’s book Power Ball: Anatomy of a Modern Baseball Game quotes the Houston Astros director of decision sciences: “Sometimes it’s just about reminding yourself that you’re not so smart.”

Related Posts

In today’s digital lending landscape, fraudsters are more sophisticated, coordinated, and relentless than ever. For companies like Terrace Finance — a specialty finance platform connecting over 5,000 merchants, consumers, and lenders — effectively staying ahead of these threats is a major competitive advantage. That is why Terrace Finance partnered with NeuroID, a part of Experian, to bring behavioral analytics into their fraud prevention strategy. It has given Terrace’s team a proactive, real-time defense that is transforming how they detect and respond to attacks — potentially stopping fraud before it ever reaches their lending partners. The challenge: Sophisticated fraud in a high-stakes ecosystem Terrace Finance operates in a complex environment, offering financing across a wide range of industries and credit profiles. With applications flowing in from countless channels, the risk of fraud is ever-present. A single fraudulent transaction can damage lender relationships or even cut off financing access for entire merchant groups. According to CEO Andy Hopkins, protecting its partners is a top priority for Terrace:“We know that each individual fraud attack can be very costly for merchants, and some merchants will get shut off from their lending partners because fraud was let through ... It is necessary in this business to keep fraud at a tolerable level, with the ultimate goal to eliminate it entirely.” Prior to NeuroID, Terrace was confident in its ability to validate submitted data. But with concerns about GenAI-powered fraud growing, including the threat of next-generation fraud bots, Terrace sought out a solution that could provide visibility into how data was being entered and detect risk before applications are submitted. The solution: Behavioral analytics from NeuroID via Experian After integrating NeuroID through Experian’s orchestration platform, Terrace gained access to real-time behavioral signals that detected fraud before data was even submitted. Just hours after Terrace turned NeuroID on, behavioral signals revealed a major attack in progress — NeuroID enabled Terrace to respond faster than ever and reduce risk immediately. “Going live was my most nerve-wracking day. We knew we would see data that we have never seen before and sure enough, we were right in the middle of an attack,” Hopkins said. “We thought the fraud was a little more generic and a little more spread out. What we found was much more coordinated activities, but this also meant we could bring more surgical solutions to the problem instead of broad strokes.” Terrace has seen significant results with NeuroID in place, including: Together, NeuroID and Experian enabled Terrace to build a layered, intelligent fraud defense that adapts in real time. A partnership built on innovation Terrace Finance’s success is a testament to what is  possible when forward-thinking companies partner with innovative technology providers. With Experian’s fraud analytics and NeuroID’s behavioral intelligence, they have built a fraud prevention strategy that is proactive, precise, and scalable. And they are not stopping there. Terrace is now working with Experian to explore additional tools and insights across the ecosystem, continuing to refine their fraud defenses and deliver the best possible experience for genuine users. “We use the analogy of a stream,” Hopkins explained. “Rocks block the flow, and as you remove them, it flows better. But that means smaller rocks are now exposed. We can repeat these improvements until the water flows smoothly.” Learn more about Terrace Finance and NeuroID Want more of the story? Read the full case study to explore how behavioral analytics provided immediate and long-term value to Terrace Finance’s innovative fraud prevention strategy. Read case study

Published: September 3, 2025 by Allison Lemaster

Financial institutions can unlock value through analytics to gain insights that drive smarter decisions and better business results.

Published: July 24, 2025 by Brian Funicelli

By leveraging loan loss analysis, lenders can create more profitable business opportunities throughout the entire customer lifecycle.

Published: April 22, 2025 by Alan Ikemura

Subscribe to our Auto blog

Enter your name and email for the latest updates.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.