
By:Wendy Greenawalt In my last few blogs, I have discussed how optimizing decisions can be leveraged across an organization while considering the impact those decisions have to organizational profits, costs or other business metrics. In this entry, I would like to discuss how this strategy can be used in optimizing decisions at the point of acquisition, while minimizing costs. Determining the right account terms at inception is increasingly important due to recent regulatory legislation such as the Credit Card Act. These regulations have established guidelines specific to consumer age, verification of income, teaser rates and interest rate increases. Complying with these regulations will require changes to existing processes and creation of new toolsets to ensure organizations adhere to the guidelines. These new regulations will not only increase the costs associated with obtaining new customers, but also the long term revenue and value as changes in account terms will have to be carefully considered. The cost of on-boarding and servicing individual accounts continues to escalate, and internal resources remain flat. Due to this, organizations of all sizes are looking for ways to improve efficiency and decisions while minimizing costs. Optimization is an ideal solution to this problem. Optimized strategy trees can be easily implemented into current processes and ensure lending decisions adhere to organizational revenue, growth or cost objectives as well as regulatory requirements. Optimized strategy trees enable organizations to create executable strategies that provide on-going decisions based upon optimization conducted at a consumer level. Optimized strategy trees outperform manually created trees as they are created utilizing sophisticated mathematical analysis and ensure organizational objectives are adhered to. In addition, an organization can quantify the expected ROI of a given strategy and provide validation in strategies – before implementation. This type of data is not available without the use of a sophisticated optimization software application. By implementing optimized strategy trees, organizations can minimize the volume of accounts that must be manually reviewed, which results in lower resource costs. In addition, account terms are determined based on organizational priorities leading to increased revenue, retention and profitability.

There seems to be two viewpoints in the market today about Knowledge Based Authentication (KBA): one positive, one negative. Depending on the corner you choose, you probably view it as either a tool to help reduce identity theft and minimize fraud losses, or a deficiency in the management of risk and the root of all evil. The opinions on both sides are pretty strong, and biases “for” and “against” run pretty deep. One of the biggest challenges in discussing Knowledge Based Authentication as part of an organization’s identity theft prevention program, is the perpetual confusion between dynamic out-of-wallet questions and static “secret” questions. At this point, most people in the industry agree that static secret questions offer little consumer protection. Answers are easily guessed, or easily researched, and if the questions are preference based (like “what is your favorite book?”) there is a good chance the consumer will fail the authentication session because they forgot the answers or the answers changed over time. Dynamic Knowledge Based Authentication, on the other hand, presents questions that were not selected by the consumer. Questions are generated from information known about the consumer – concerning things the true consumer would know and a fraudster most likely wouldn’t know. The questions posed during Knowledge Based Authentication sessions aren’t designed to “trick” anyone but a fraudster, though a best in class product should offer a number of features and options. These may allow for flexible configuration of the product and deployment at multiple points of the consumer life cycle without impacting the consumer experience. The two are as different as night and day. Do those who consider “secret questions” as Knowledge Based Authentication consider the password portion of the user name and password process as KBA, as well? If you want to hold to strict logic and definition, one could argue that a password meets the definition for Knowledge Based Authentication, but common sense and practical use cause us to differentiate it, which is exactly what we should do with secret questions – differentiate them from true KBA. KBA can provide strong authentication or be a part of a multifactor authentication environment without a negative impact on the consumer experience. So, for the record, when we say KBA we mean dynamic, out of wallet questions, the kind that are generated “on the fly” and delivered to a consumer via “pop quiz” in a real-time environment; and we think this kind of KBA does work. As part of a risk management strategy, KBA has a place within the authentication framework as a component of risk- based authentication… and risk-based authentication is what it is really all about.

When a client is selecting questions to use, Knowledge Based Authentication is always about the underlying data – or at least it should be. The strength of Knowledge Based Authentication questions will depend, in large part, on the strength of the data and how reliable it is. After all, if you are going to depend on Knowledge Based Authentication for part of your risk management and decisioning strategy the data better be accurate. I’ve heard it said within the industry that clients only want a system that works and they have no interest where the data originates. Personally, I think that opinion is wrong. I think it is closer to the truth to say there are those who would prefer if clients didn’t know where the data that supports their fraud models and Knowledge Based Authentication questions originates; and I think those people “encourage” clients not to ask. It isn’t a secret that many within the industry use public record data as the primary source for their Knowledge Based Authentication products, but what’s important to consider is just how accessible that public record information is. Think about that for a minute. If a vendor can build questions on public record data, can a fraudster find the answers in public record data via an online search? Using Knowledge Based Authentication for fraud account management is a delicate balance between customer experience/relationship management and risk management. Because it is so important, we believe in research – reading the research of well-known and respected groups like Pew, Tower, Javelin, etc. and doing our own research. Based on our research, I know consumers prefer questions that are appropriate and relative to their activity. In other words, if the consumer is engaged in a credit-granting activity, it may be less appropriate to ask questions centered on personal associations and relatives. Questions should be difficult for the fraudster, but not difficult or perceived as inappropriate or intrusive by the true consumer. Additionally, I think questions should be applicable to many clients and many consumers. The question set should use a mix of data sources: public, proprietary, non-credit, credit (if permissible purpose exists) and innovative. Is it appropriate to have in-depth data discussions with clients about each data source? Debatable. Is it appropriate to ensure that each client has an understanding of the questions they ask as part of Knowledge Based Authentication and where the data that supports those questions originates? Absolutely.