
By: Staci Baker With the shift in the economy, it has become increasingly more difficult to gauge — in advance — what a consumer is going to do when it comes to buying an automobile. However, there are tools available that allow auto lenders to gain insight into auto loans/leases that were approved but did not book, and for assessing credit risk of their consumers. By gaining competitive insight and improving risk management, an auto lender is able to positively impact loan origination strategies by determining the proper loan or lease term, what the finance offer should be and proactively address each unique market and risk segment. As the economy starts to rebound, the auto industry needs to take a more proactive approach in the way its members acquire business; the days of business-as-usual are gone. All factors except the length of the loan being the same, if one auto dealer is extending 60-month loans per its norm and the dealer down the road is extending 72-month loans, a consumer may choose the longer loan period to help conserve cash for other items. This is one scenario for which auto dealers could leverage Experian’s Auto Prospect Intelligence(SM). By performing a thorough analysis of approved loans that booked with other auto lenders, and their corresponding terms, auto lenders will receive a clear picture of who they are losing their loans to. This information will allow an organization to compare account terms within specific peer group or institution type (captive/banks/credit union) and address discrepancies by creating more robust pricing structures and enhanced loan terms, which will result in strategic portfolio growth.

Since 2007, when the housing and credit crises started to unfold, we’ve seen unemployment rates continue to rise (9.7% in March 2010 *) with very few indicators that they will return to levels that indicate a healthy economy any time soon. I’ve also found myself reading about the hardship and challenge that people are facing in today’s economy, and the question of creditworthiness keeps coming into my mind, especially as it relates to employment, or the lack thereof, by a consumer. Specifically, I can’t help but sense that there is a segment of the unemployed that will soon possess a better risk profile than someone who has remained employed throughout this crisis. In times of consistent economic performance, the static state does not create the broad range of unique circumstances that comes when sharp growth or decline occurs. For instance, the occurrence of strategic default is one circumstance where the capacity to pay has not been harmed, but the borrower defaults on the commitment anyway. Strategic defaults are rare in a stable market. In contrast, many unemployed individuals who have encountered unfortunate circumstances and are now out of work may have repayment issues today, but do possess highly desirable character traits (willingness to pay) that enhance their long-term desirability as a borrower. Although the use of credit score trends, credit risk modeling and credit attributes are essential in assessing the risk within these different borrowers, I think new risk models and lending policies will need to adjust to account for the growing number of individuals who might be exceptions to current policies. Will character start to account for more than a steady job? Perhaps. This change in lending policy, may in turn, allow lenders to uncover new and untapped opportunities for growth in segments they wouldn’t traditionally serve. * Source: US Department of Labor. http://www.bls.gov/bls/unemployment.htm

A common request for information we receive pertains to shifts in credit score trends. While broader changes in consumer migration are well documented – increases in foreclosure and default have negatively impacted consumer scores for a group of consumers – little analysis exists on the more granular changes between the score tiers. For this blog, I conducted a brief analysis on consumers who held at least one mortgage, and viewed the changes in their score tier distributions over the past three years to see if there was more that could be learned from a closer look. I found the findings to be quite interesting. As you can see by the chart below, the shifts within different VantageScore® credit score tiers shows two major phases. Firstly, the changes from 2007 to 2008 reflect the decline in the number of consumers in VantageScore® credit score tiers B, C, and D, and the increase in the number of consumers in VantageScore® credit score tier F. This is consistent with the housing crisis and economic issues at that time. Also notable at this time is the increase in VantageScore® credit score tier A proportions. Loan origination trends show that lenders continued to supply credit to these consumers in this period, and the increase in number of consumers considered ‘super prime’ grew. The second phase occurs between 2008 and 2010, where there is a period of stabilization for many of the middle-tier consumers, but a dramatic decline in the number of previously-growing super-prime consumers. The chart shows the decline in proportion of this high-scoring tier and the resulting growth of the next highest tier, which inherited many of the downward-shifting consumers. I find this analysis intriguing since it tends to highlight the recent patterns within the super-prime and prime consumer and adds some new perspective to the management of risk across the score ranges, not just the problematic subprime population that has garnered so much attention. As for the true causes of this change – is unemployment, or declining housing prices are to blame? Obviously, a deeper study into the changes at the top of the score range is necessary to assess the true credit risk, but what is clear is that changes are not consistent across the score spectrum and further analyses must consider the uniqueness of each consumer.