Loading...

Make Smarter, Faster Decisions with a Custom Machine Learning Model

Published: March 6, 2023 by Theresa Nguyen

Machine learning (ML) is a powerful tool that can consume vast amounts of data to uncover patterns, learn from past behaviors, and predict future outcomes. By leveraging ML-powered credit risk models, lenders can better determine the likelihood that a consumer will default on a loan or credit obligation, allowing them to score applicants more accurately.

When applied to credit decisioning, lenders can achieve a 25 percent reduction in exposure to risky customers and a 35 percent decrease in non-performing loans.1

While ML-driven models enable lenders to target the right audience and control credit losses, many organizations face challenges in developing and deploying these models. Some still rely on traditional lending models with limitations preventing them from making fast and accurate decisions, including slow reaction times, fewer data sources, and less predictive performance. With a trusted and experienced partner, financial institutions can create and deploy highly predictive ML models that optimize their credit decisioning.

Case study: Increase customer acquisition with improved predictive performance

Looking to meet growth goals without increasing risk, a consumer goods retailer sought out a modern and flexible solution that could help expand its finance product options. This meant replacing existing ML models with a custom model that offers greater transparency and predictive power.

The retailer partnered with Experian to develop a transparent and explainable ML model. Based on the model’s improved predictive performance, transparency, and ability to derive adverse action reasons for declines, the retailer increased sales and application approval rates while reducing credit risk.

Read the case study Learn about our custom modeling capabilities

1 Experian (2020). The Art of Decisioning in Uncertain Times

Related Posts

Reject inferencing techniques unlock a more comprehensive view of your applicant pool for more informed underwriting decisions. 

Published: September 17, 2024 by Julie Lee

To authenticate identities and combat fraud within the Gen Z population, financial organizations need to implement comprehensive strategies.

Published: August 16, 2024 by Alex Lvoff

With the advent of AI and ML, optimizing credit prescreen campaigns has never been easier or more efficient.

Published: July 17, 2024 by Theresa Nguyen

Subscribe to our blog

Enter your name and email for the latest updates.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Subscribe to our Experian Insights blog

Don't miss out on the latest industry trends and insights!
Subscribe