Loading…
Which types of decisions will improve your business benefits?

By: Roger Ahern It’s been proven in practice many times that by optimizing decisions (through improved decisioning strategies, credit risk modeling, risk-based pricing, enhanced scoring models, etc.) you will realize significant business benefits in key metrics, such as net interest margin, collections efficiency, fraud referral rates and many more.  However, given that a typical company may make more than eight million decisions per year, which decisions should one focus on to deliver the greatest business benefit? In working with our clients, Experian has compiled the following list of relevant types of decisions that can be improved through improvements in decision analytics.  As you review the list below, you should identify those decisions that are relevant to your organization, and then determine which decision types would warrant the greatest opportunity for improvement. • Cross-sell determination • Prospect determination • Prescreen decision • Offer/treatment determination • Fraud determination • Approve/decline decision • Initial credit line/limit/usage amount • Initial pricing determination • Risk-based pricing • NSF pay/no-pay decision • Over-limit/shadow limit authorization • Credit line/limit/usage/ management • Retention decisions • Loan/payment modification • Repricing determination • Predelinquency treatment • Early/late-stage delinquency treatment • Collections agency placement • Collection/recovery treatment  

Published: Dec 14, 2009 by

Does mortgage strategic default really exist?  Part 3

In my previous two blogs, I introduced the definition of strategic default and compared and contrasted the population to other types of consumers with mortgage delinquency.  I also reviewed a few key characteristics that distinguish strategic defaulters as a distinct population. Although I’ve mentioned that segmenting this group is important, I would like to specifically discuss the value of segmentation as it applies to loan modification programs and the selection of candidates for modification. How should loan modification strategies be differentiated based on this population? By definition, strategic defaulters are more likely to take advantage of loan modification programs. They are committed to making the most personally-lucrative financial decisions, so the opportunity to have their loan modified – extending their ‘free’ occupancy – can be highly appealing.  Given the adverse selection issue at play with these consumers, lenders need to design loan modification programs that limit abuse and essentially screen-out strategic defaulters from the population. The objective of lenders when creating loan modification programs should be to identify consumers who show the characteristics of cash-flow managers within our study. These consumers often show similar signs of distress as the strategic defaulters, but differentiate themselves by exhibiting a willingness to pay that the strategic defaulter, by definition, does not. So, how can a lender make this identification? Although these groups share similar characteristics at times, it is recommended that lenders reconsider their loan modification decisioning algorithms, and modify their loan modification offers to screen out strategic defaulters.  In fact, they could even develop programs such as equity-sharing arrangements whereby the strategic defaulter could be persuaded to remain committed to the mortgage.  In the end, strategic defaulters will not self-identify by showing lower credit score trends, by being a bank credit risk, or having previous bankruptcy scores, so lenders must create processes to identify them among their peers. For more detailed analyses, lenders could also extend the Experian-Oliver Wyman study further, and integrate additional attributes such as current LTV, product type, etc. to expand their segment and identify strategic defaulters within their individual portfolios.    

Published: Dec 14, 2009 by

Knowledge Based Authentication (KBA) best practices, Part 3

–by Andrew Gulledge General configuration issues Question selection- In addition to choosing questions that generally have a high percentage correct and fraud separation, consider any questions that would clearly not be a fit to your consumer population. Don’t get too trigger-happy, however, or you’ll have a spike in your “failure to generate questions” rate. Number of questions- Many people use three or four out-of-wallet questions in a Knowledge Based Authentication session, but some use more or less than that, based on their business needs. In general, more questions will provide a stricter authentication session, but might detract from the customer experience. They may also create longer handling times in a call center environment. Furthermore, it is harder to generate a lot of questions for some consumers, including thin-file types. Fewer Knowledge Based Authentication questions can be less invasive for the consumer, but limits the fraud detection value of the KBA process. Multiple choice- One advantage of this answer format is that it relies on recognition memory rather than recall memory, which is easier for the consumer. Another advantage is that it generally prevents complications associated with minor numerical errors, typos, date formatting errors and text scrubbing requirements. A disadvantage of multiple-choice, however, is that it can make educated guessing (and potentially gaming) easier for fraudsters. Fill in the blank- This is a good fit for some KBA questions, but less so with others. A simple numeric answer works well with fill in the blank (some small variance can be allowed where appropriate), but longer text strings can present complications. While undoubtedly difficult for a fraudster to guess, for example, most consumers would not know the full, official and (correct spelling) of the name to which they pay their monthly auto payment. Numeric fill in the blank questions are also good candidates for KBA in an IVR environment, where consumers can use their phone’s keypad to enter the answers.  

Published: Dec 14, 2009 by Guest Contributor

Subscribe to our blog

Enter your name and email for the latest updates.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Subscribe to our Experian Insights blog

Don't miss out on the latest industry trends and insights!
Subscribe