
–by Andrew Gulledge Where does Knowledge Based Authentication fit into my decisioning strategy? Knowledge Based Authentication can fit into various parts of your authentication process. Some folks choose to put every consumer through KBA, while others only send their riskier transactions through the out-of-wallet questions. Some people use Knowledge Based Authentication to feed a manual review process, while others use a KBA failure as a hard-decline. Uses for KBA are as sundry and varied as the questions themselves. Decision Matrix- As discussed by prior bloggers, a well-engineered fraud score can provide considerable lift to any fraud risk strategy. When possible, it is a good idea to combine both score and questions into the decisioning process. This can be done with a matrixed approach—where you are more lenient on the questions if the applicant has a good fraud score, and more lenient on the score if the applicant did well on the questions. In a decision matrix, a set decision code is placed within various cells, based on fraud risk. Decision Overrides- These provide a nice complement to your standard fraud decisioning strategy. Different fraud solution vendors provide different indicators or flags with which decisioning rules can be created. For example, you might decide to fail a consumer who provides a social security number that is recorded as deceased. These rules can help to provide additional lift to the standard decisioning strategy, whether it is in addition to Knowledge Based Authentication questions alone, questions and score, etc. The overrides can be along the lines of both auto-pass and auto-fail.

By: Wendy Greenawalt In my last blog on optimization we discussed how optimized strategies can improve collection strategies. In this blog, I would like to discuss how optimization can bring value to decisions related to mortgage delinquency/modification. Over the last few years mortgage lenders have seen a sharp increase in the number of mortgage account delinquencies and a dramatic change in consumer mortgage payment trends. Specifically, lenders have seen a shift in consumer willingness from paying their mortgage obligation first, while allowing other debts to go delinquent. This shift in borrower behavior appears unlikely to change anytime soon, and therefore lenders must make smarter account management decisions for mortgage accounts. Adding to this issue, property values continue to decline in many areas and lenders must now identify if a consumer is a strategic defaulter, a candidate for loan modification, or a consumer affected by the economic downturn. Many loans that were modified at the beginning of the mortgage crisis have since become delinquent and have ultimately been foreclosed upon by the lender. Making optimizing decisions related to collection action for mortgage accounts is increasingly complex, but optimization can assist lenders in identifying the ideal consumer collection treatment. This is taking place while lenders considering organizational goals, such as minimizing losses and maximizing internal resources, are retaining the most valuable consumers. Optimizing decisions can assist with these difficult decisions by utilizing a mathematical algorithm that can assess all possible options available and select the ideal consumer decision based on organizational goals and constraints. This technology can be implemented into current optimizing decisioning processes, whether it is in real time or batch processing, and can provide substantial lift in prediction over business as usual techniques.

For the past couple years, the deterioration of the real estate market and the economy as a whole has been widely reported as a national and international crisis. There are several significant events that have contributed to this situation, such as, 401k plans have fallen, homeowners have simply abandoned their now under-valued properties, and the federal government has raced to save the banking and automotive sectors. While the perspective of most is that this is a national decline, this is clearly a situation where the real story is in the details. A closer look reveals that while there are places that have experienced serious real estate and employment issues (California, Florida, Michigan, etc.), there are also areas (Texas) that did not experience the same deterioration in the same manner. Flash forward to November, 2009 – with signs of recovery seemingly beginning to appear on the horizon – there appears to be a great deal of variability between areas that seem poised for recovery and those that are continuing down the slope of decline. Interestingly though, this time the list of usual suspects is changing. In a recent article posted to CNN.com, Julianne Pepitone observes that many cities that were tops in foreclosure a year ago have since shown stabilization, while at the same time, other cities have regressed. A related article outlines a growing list of cities that, not long ago, considered themselves immune from the problems being experienced in other parts of the country. Previous economic success stories are now being identified as economic laggards and experiencing the same pains, but only a year or two later. So – is there a lesson to be taken from this? From a business intelligence perspective, the lesson is generalized reporting information and forecasting capabilities are not going to be successful in managing risk. Risk management and forecasting techniques will need to be developed around specific macro- and micro-economic changes. They will also need to incorporate a number of economic scenarios to properly reflect the range of possible future outcomes about risk management and risk management solutions. Moving forward, it will be vital to understand the differences in unemployment between Dallas and Houston and between regions that rely on automotive manufacturing and those with hi-tech jobs. These differences will directly impact the performance of lenders’ specific footprints, as this year’s “Best Place to Live” according to Money.CNN.com can quickly become next year’s foreclosure capital. ihttp://money.cnn.com/2009/10/28/real_estate/foreclosures_worst_cities/index.htm?postversion=2009102811 iihttp://money.cnn.com/galleries/2009/real_estate/0910/gallery.foreclosures_worst_cities/2.html