Mortgage originations kicked off Q1 2015 with a 25% year over year increase to $315 billion.
Small-business credit conditions improved in Q1 2013, reversing much of the deterioration seen during Q4 2012. The Q1 rise was fueled primarily by falling delinquency rates in every segment compared with a year earlier. The total share of delinquent dollars was 11.2 percent for Q1 2013 - 1.4 percentage points lower than a year ago.
A recent Experian credit trends analysis of new mortgages and bankcards from Q1 2013 shows a 16 percent year-over-year increase in mortgage origination volume and a 20 percent increase in bankcard limits. Providing further evidence of continued economic recovery throughout the nation, mortgage delinquency rates reached multi-year lows and bankcard delinquency rates reached near-record lows.
By: Wendy Greenawalt Financial institutions have placed very little focus on portfolio growth over the last few years. Recent market updates have provided little guidance to the future of the marketplace, but there seems to be a consensus that the US economic recovery will be slow compared to previous recessions. The latest economic indicators show that slow employment growth, continued property value fluctuations and lower consumer confidence will continue to influence the demand and issuance of new credit. However, the positive aspect is that most analysts agree that these indicators will improve over the next 12 to 24 months. Due to this, lenders should start thinking about updating acquisition strategies now and consider new tools that can help them reach their short and long-term portfolio growth goals. Most financial institutions have experienced high account delinquency levels in the past few years. These account delinquencies have had a major impact to consumer credit scores. The bad news is that the pool of qualified candidates continues to shrink so the competition for the best consumers will only increase over the next few years. Identifying target populations and improving response/booking rates will be a challenge for some time so marketers must create smarter, more tailored offers to remain competitive and strategically grow their portfolios. Recently, new scores have been created to estimate consumer income and debt ratios when combined with consumer credit data. This data can be very valuable and when combined with optimization (optimizing decisions) can provide robust acquisition strategies. Specifically, optimization / optimizing decisions allows an organization to define product offerings, contact methods, timing and consumer known preferences, as well as organizational goals such as response rates, consumer level profitability and product specific growth metrics into a software application. The optimization software will then utilize a proven mathematical technique to identify the ideal product offering and timing to meet or exceed the defined organizational goals. The consumer level decisions can then be executed via normal channels such as mail, email or call centers. Not only does optimization software reduce campaign development time, but it also allows marketers to quantify the effectiveness of marketing campaigns – before execution. Today, optimization technology provide decision analytics accessible for organizations of almost any size and can provide an improvement over business-as-usual techniques for decisioning strategies. If your organization is looking for new tools to incorporate into existing acquisition processes, I would encourage you to consider optimization and the value it can bring to your organization.
By: Kari Michel Lenders are looking for ways to improve their collections strategy as they continue to deal with unprecedented consumer debt, significant increases in delinquency, charge-off rates and unemployment and, declining collectability on accounts. Improve collections To maximize recovered dollars while minimizing collections costs and resources, new collections strategies are a must. The standard assembly line “bucket” approach to collection treatment no longer works because lenders can not afford the inefficiencies and costs of working each account equally without any intelligence around likelihood of recovery. Using a segmentation approach helps control spend and reduces labor costs to maximize the dollars collected. Credit based data can be utilized in decision trees to create segments that can be used with or without collection models. For example, below is a portion of a full decision tree that shows the separation in the liquidation rates by applying an attribute to a recovery score This entire segment has an average of 21.91 percent liquidation rate. The attribute applied to this score segment is the aggregated available credit on open bank card trades updated within 12 months. By using just this one attribute for this score band, we can see that the liquidation rates range from 11 to 35 percent. Additional attributes can be applied to grow the tree to isolate additional pockets of customers that are more recoverable, and identify segments that are not likely to be recovered. From a fully-developed segmentation analysis, appropriate collections strategies can be determined to prioritize those accounts that are most likely to pay, creating new efficiencies within existing collection strategies to help improve collections.